High-Efficiency, Medium-Voltage Input, Solid-State, Transformer-Based 400kW/1000-V/400-A Extreme Fast Charger for Electric Vehicles

DE-EE0008361

ELT241

Dr. Charles Zhu, Principal Investigator Delta Electronics (Americas) Ltd June, 2020

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Timeline

- Start December 1, 2018
- Finish November 30,2021
- 50% complete

Barriers

- System architecture and control for solid state transformer
- Medium-voltage isolation
- Power cell topology and control for high efficiency
- SiC semiconductor devices with high dv/dt and noise

Project Overview

Budget

- Total Budget: \$7.0 million
 - DOE Cost Share: \$3.5 million
 - Recipients Cost Share: \$3.5 million
- 2020 Funding Planned: \$2.1 million

Team

Lead: Delta Electronics Americas Ltd **Partners:**

- General Motors
- DTE Energy
- CPES at Virginia Tech
- NextEnergy
- Michigan Energy Office
- · City of Detroit

Relevance Project Objectives

- □ AREA OF INTEREST (AOI) 1: Extreme Fast Charging (XFC) Systems for Electric Vehicles
- Delta Electronics aims to achieve objectives by the end of program
 - To design and test a high-efficiency, medium-voltage-input, solid-state-transformer-based 400-kW Extreme Fast Charger (XFC) for electric vehicles, achieving better than 96.5 percent efficiency.
 - To demonstrate extreme fast charging with a retrofitted General Motors' light-duty battery electric vehicle at 3C or higher charging rate for at least 50 percent increase of SOC.
 - To achieve a 180-mile charge within 10 minutes.

Budget Period 1 Milestones

BP1: 12/1/2	2018 - 11/3	0/2019	
Planned Date	Mile- stone #	Milestone	Achievement
2/28/2019	M1.1	Charge Interface Specification	Complete the charge interface documentation and have specification review
5/31/2019	M1.2	SST Cells Built and 1- Phase Serial Integration complete	1-phase SST module built
8/31/2019	M1.3	1-phase series SST and Buck cell Integrated test complete	1-phase SST cell and buck cell test results demonstrate compliance with cell specifications
11/30/2019	M1.4	3-phase 135kW charger integration complete	3-phase SST module built

Budget Period 2 Milestones

BP2: 12/1/2	2019 - 11/	/30/2020	
Planned Date	Mile- stone #	Milestone	Achievement
2/28/2020	M2.1	HVDS/RESS Build and Functional Test Complete	HVDS/RESS Build and Functional Test demonstrates compliance with specifications
5/31/2020	M2.2	3-Phase 135kW Charger Integration and Test Complete	3-Phase 135kW Charger Test demonstrates compliance with specifications
8/31/2020	M2.3	4.8kV 400kW XFC mechanical design complete	4.8kV/13.2kV 400kW XFC mechanical design complete for system prototype making
11/30/2020	M2.4	4.8kV 400kW XFC Lab Test Complete	4.8kV 400kW XFC Lab Test Results demonstrate compliance at partial power

Approaches

- Medium-voltage AC input, 4.8-kV or 13.2-kV
 Solid state transformer (SST)-based technology to reduce the size and weight, and to increase scalability and flexibility
 - ☐ Cascaded multilevel converter topology as medium voltage interface to reduce the total number of power cell
 - ☐ Multilevel resonant converter for medium voltage isolation, operated at high frequency with soft switching
 - ☐ SiC MOSFET devices for high voltage and lower loss
 - ☐ Interface to an Energy Storage System (ESS) and/or a renewable energy generation system (e.g. PV)

Conventional DC Fast Charger Solution

Efficiency: $99\% \times 99.3\% \times 95\% = 93.4\%$ Footprint: $50 \text{ ft}^2 + 40 \text{ ft}^2 + 20 \text{ ft}^2 = 110 \text{ ft}^2$

Installation site for Tesla Super Charger in U.S.A

- Bulky and heavy
- •Fixed voltage & power
- Space consuming
- Labor intensive

- Non expandable capacity
- High initial investment

Proposed Extreme Fast Charger Solution

Efficiency: 97.5%

28 ft² **Footprint:**

99% = 96.5% Increased by 3%

10 ft² = 38 ft² Reduced by 50%

 Modularized structure

 Scalable voltage/power

Conceptual SST based extreme fast charging station

Year 2 Year 3 Year 4

- Expandable capacity
- Lower initial cost

SST based XFC System Structure

- 3-Φ MVAC input:
- 4.8kV/13.2kV
- •iTHD<5%, PF≥0.98
- •60Hz±10%

SST DC output:

- •1050V±3%
- 400kW power
- Interface for ESS/PV

Charger output:

- •200V~1000VDC
- 400A max current
- SAE J1772 charging interface CCS1

XFC Specification

Power Rating	400 kW
Input AC Voltage	4.8 kV and 13.2 kV, 3-Phase, line-to-line
AC Line Frequency	60 Hz
HV Battery Voltage Range	200-1000 VDC
Maximum Output Current	400ADC
Efficiency	96.5% peak
Charge Interface	J1772 CCS1
Operational Ambient Temperature Range	-25 to 50°C
Environmental Protection	NEMA 3R (outdoor)
Additional Interface	HVDC interface (to ESS/renewable energy source)

Technical Progress

DC/DC Resonant Converter

Simplification of AC-DC Stage Simulation

System order: $3 + 3 \times 9 \times [2+5] + 1 + X = 193 + X$

(N) (C)(CLLLC)(C) (L)

System order: 0

Reference: U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, "Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs," IEEE Trans. On Power Delivery, vol. 26, no. 1, pp 316-324, Jan. 2011

Control Block Diagram for AC/DC Stage

Hossein Iman-Eini, Jean-Luc Schanen, Shahrokh Farhangi, James Roudet, "A Modular Strategy for Control and Voltage Balancing of Cascaded H-Bridge Rectifiers," *IEEE Trans. on Power Electronics*, vol. 23, pp. 2428-2442, 2008

Simulation of Load Power Step Response

135kW System Test

Delta Livonia Automotive Lab

135kW System Test Conditions

- Input: 4.8kV +/- 10% 3-phase AC
- SST output: 1050Vdc
- Buck Charger output: 200V, 400V, 800V, 990V
- Power: 10%~100% of 135kW

135kW SST Efficiency Measurement

Buck Converter Efficiency

135kW XFC System Efficiency

The peak efficiency reached 97.37%, which over achieve the target of 96.5%.

4.8kV/135kW SST AC Input Waveforms (full load)

Vin = 4.8kVac 3-phase, Pout=135kW THD of AC current is only 0.80%

135kW SST DC Output Waveforms (full load)

The voltage ripple is 5Vp-p, or 0.5% of the DC voltage. The current ripple is 5Ap-p, or 4% of the DC current.

400kW SST Cabinet Design

AC Input Cabinet Converter Cabinets Control Cabinet

Dimension (W*D*H)	3100*1300*2100mm
Weight (System)	3000kgs
Cooling	Forced air

Retrofit Vehicle RESS/HVDS System

Cells/Modules

Retrofit vehicle in Progress

Battery Module Configuration

- 768 Volt cells to achieve >3C charge rate
- 192 series, 4 parallel string configuration for 800V charging

RESS: Rechargeable Energy Storage System (battery pack)

HVDS: High Voltage Distribution System

Vehicle Charging Profile Analysis Result

— Charger Current, 25C Initial Temp — Charger Current, 32C Initial Temp
— Cell Temperature, 25C Initial Temp — Cell Temperature, 32C Initial Temp
— State of Charge, 25C Initial Temp — State Of Charge, 32C Initial Temp

SOC increased by 57.3% and 62.4% respectively in 10minutes. The target is 50%.

Acknowledgement to Partners

Activities

BP1 Year-End Review Delta Livonia Office December 12th, 2019

Proposed Future Works

- Remainder of FY 2020
 - Test vehicle HVDS/RESS.
 - Test 400kW XFC system with vehicle emulator.
 - Test 400kW XFC system with Chevy Bolt car.
- FY 2021
 - Build test vehicle.
 - Test 400kW XFC system with 800V retrofit vehicle.

"Any proposed future work is subject to change based on funding levels."

Smarter. Greener. Together.

To learn more about Delta, please visit www.deltaww.com

or scan the QR code

English

Tradition al Chinese

Simplified Chinese

